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Abstract

The predominant tasks in aircraft inspection are those that require visual search. Speed and accuracy characterize
visual search tasks. Since the trade-o! between speed and accuracy directly a!ects the safety, dependability and
a!ordability of air transportation, there is considerable motivation to express this relationship in quantitative terms.
Although models of this trade-o! have been previously proposed for various search tasks, the applicability of these
models to the tasks typically required of aircraft inspectors is limited. Thus new models of visual search that typify
aircraft inspection are adopted here in order to examine the explicit trade-o! between speed and accuracy in this
environment.

Relevance to industry

The models adopted here, speci"cally applicable to aircraft inspection, consider the trade-o! between speed and
accuracy } a trade-o! that ultimately a!ects the a!ordability, dependability, and safety (and therefore public perception
of ) air travel } in quantitative terms. These models also de"ne the extent to which accuracy can be improved. ( 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

The goal of an aviation inspection and mainten-
ance system is to provide the public with safe,
dependable, and a!ordable air transportation. Ac-
cordingly, the aviation industry intensi"ed its
e!orts to examine its inspection procedures in
response to a number of maintenance-related air-

craft accidents and incidents in the late-1980s
(FAA, 1991). The investigation of inspection pro-
cedures was warranted by the fact that approxim-
ately 18% of these wide-body aircraft accidents
were a consequence of maintenance and inspection
errors, the majority of which were attributed to
inspection (Phillips, 1994).

Simply stated, the inspection function involves
examining structures for defects that can a!ect the
airworthiness of the aircraft. The primary struc-
tural defects that occur on structures are cracks and
corrosion (FAA, 1991); cracks are a result of re-
peated stretching of the structure from aerodynam-
ic or internal pressure loads, while corrosion arises
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1These latter follow-up inspections are often referred to as
buy-back inspections.

from weathering or exposure to harmful chemicals.
Older aircraft are more susceptible to the e!ects of
fatigue cracks (especially multi-site damage) and
corrosion (Drury et al., 1990). Since almost the
entire commercial #eet is now operating into
the `extended lifea phase of its life cycle (Bobo,
1990), the inspection activity has become even more
critical.

Despite the fact that aircraft inspection includes
a number of diverse tasks (e.g., nondestructive tests,
such as employing eddy current equipment to de-
tect cracks in rivets; tactile tasks, such as wiping
hoses in order to detect #uid leaks; and visual tasks,
such as searching for corrosion on aircraft struc-
tures), studies of the process have revealed that
visual search constitutes 90% of these tasks (Drury
et al., 1990). Accordingly, visual search is the
subject of this investigation. (It should be empha-
sized that the visual search component of the in-
spection task is distinct from the decision making
component. Moreover, it is not unusual for the
mechanics, rather than the inspectors, to make
the decisions regarding the nature and severity of
the defects.)

Speed and accuracy characterize the perfor-
mance of visual search tasks. Speed refers to the
time required to complete the task, whereas accu-
racy is related to the number of defects detected.
These two measures are inversely related; that is,
accuracy generally decreases as speed increases and
vice versa. This relationship, which has been
validated both in laboratory settings and under
"eld conditions, is commonly referred to as the
speed accuracy trade-o! (SATO) (Drury, 1994).

The trade-o! between speed and accuracy a!ects
the safety, dependability, and a!ordability of air
transportation. For example, if the time constraint
were to be relaxed, accuracy, and therefore safety,
would be expected to improve as a result. More-
over, the number of inspection/maintenance/in-
spection1 cycles could be reduced, which would be
desirable from a logistical standpoint. On the other
hand, such a policy could conceivably disrupt #ight
schedules. It would certainly be more costly to an

industry that spent over eight billion dollars for
maintenance in calendar year 1988 (FAA, 1991).

Thus it is not only clear that speed and accuracy
a!ect the objectives of safety, dependability, and
a!ordability, but that these objectives can also be
con#icting. These circumstances provide compell-
ing motivation to analyze the SATO in quantitative
terms. Such an analysis though, requires models of
visual search that are capable of satisfactorily pre-
dicting inspector accuracy as a function of time in
this domain.

Several di!erent models have been employed
previously to investigate the SATO (e.g., Morawski
et al., 1980,1992; Arani et al., 1984; Karwan et al.,
1995; Drury and Chi, 1995). These models, how-
ever, were designed expressly for two situations: (1)
situations in which only one defect of a speci"c type
could occur (e.g., Morawski et al., 1992; Drury and
Chi, 1995), or (2) situations wherein multiple defects
could occur, but with the stipulation that the search
would terminate when one or more defects are
detected (e.g., Morawski et al., 1980; Arani et al.,
1984). Moreover in these instances, an item is ordi-
narily classi"ed as `defectivea if even one defect is
detected in the search "eld. Consequently, search
accuracy has traditionally been de"ned as the pro-
portion of defective items that are discovered.

In contrast, the models later developed by Harris
et al. (1998) were designed for situations in which
the objective is to locate as many defects as possible
on a part, within a speci"ed period of time. Accord-
ingly, accuracy is de"ned in this case as the propor-
tion of defects that are discovered in the search
"eld. Since the design of these models and the
associated measure of accuracy are more consistent
with that of aircraft inspection tasks, there is cause
to reexamine this issue. Therefore, the models de-
veloped by Harris et al. (1998) will be employed to
analyze the relationship between speed and accu-
racy in this speci"c context.

2. Model characterization

The process of searching a "eld (e.g., an aircraft
structure) for defects is modeled as a series of
"xations. The search "eld itself is represented as
a set of uniformly sized cells. The size of these cells
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2Certain factors that a!ect the uncertainty of detection, such
as the conspicuity of the target, and its distance from the center
of "xation, have been incorporated into the model (refer to
Section 4). However, the model does not capture other factors
that may also in#uence the outcome, such as vigilance and
expectancy.

correspond to the visual lobe, or, in other words,
`the area2 which can be perceived in a single
glimpsea or "xation (Morawski et al., 1992). Any
one of these cells may contain one or more defects.
In order for a particular defect to be located, two
events must occur in succession. First, the inspector
must "rst "xate on the cell that contains the defect
and secondly, the inspector must detect the defect.

Whether or not an inspector "xates on a particu-
lar cell depends on the search behavior and the
number of "xations (i.e., the time engaged in
search). Systematic and random patterns of behav-
ior are exhibited throughout the search process. An
inspector displaying systematic search behavior
will choose from among the cells that have not yet
been "xated on, whereas the subsequent "xations of
an inspector exhibiting random behavior will be
arbitrary. (Search behavior is commonly assumed
to be in#uenced by memory retrieval (e.g., Arani,
1981) and search strategy (e.g., Williams, 1966;
Drury and Chi, 1995).) Thus, these two tendencies
represent behavioral extremes.

The likelihood of an inspector "xating on a par-
ticular cell is directly related to the number of
"xations, relative to the size of the search "eld, for
any established search behavior. Of particular in-
terest here is the number of "xations required to
make a complete scan (exhaustive search) of the
"eld, since failing to do so would increase the risk of
an inspector overlooking defects. (This is in con-
trast to traditional applications in which a search
would terminate upon the detection of any defect.)
However, an exhaustive scan of the "eld can only
be assured in instances of absolute systematic be-
havior. Nevertheless, this number will serve to es-
tablish search performance benchmarks.

Lastly, it is not certain that an inspector will
detect a particular defect, even though the cell con-
taining the defect has been "xated on. This uncer-
tainty is due to such factors as the conspicuity of
the target, and its distance from the center of "x-
ation. The conditional probability that an inspector
successfully detects a particular defect, provided
that the cell containing the defect has been "xated
on, will be referred to as the conditional probability
of detection. Two assumptions will be made regard-
ing this conditional probability. First, it does not
vary with the cumulative number of "xations, even

in the event there are repeated "xations on the
same cell. Secondly, it is not a!ected by the location
of a defect in the search "eld. As a result, for each
defect type, t, the conditional probability of detec-
tion is considered to be a constant, p

t
.2

3. Expected search accuracy

Two complementary models of visual search are
adopted here for the inspection of aircraft struc-
tures. These models were formulated under the
exclusive assumptions of systematic and random
search behavior in order to encompass the entire
range of search performance. The performance
measure of interest is accuracy, where accuracy is
de"ned as the proportion of defects that are detec-
ted in a particular search "eld (e.g., an aft cargo pit)
within a speci"ed period of time (or equivalently,
a given number of "xations). Since accuracy is a
random variable, the expected value (mean) of the
accuracy was employed as the actual measure of
search performance.

Now, suppose that the number of "xations that
occur is equal to an integer multiple, m, of the
number of distinct cells that comprise the search
"eld, c. For a defect of type t, Harris et al. (1998)
have demonstrated that the mean of the search
accuracy is

kr
t
(m]c)"1![1!(p

t
/c)]mCc, (1)

in the case of strictly random behavior, whereas in
the case of strictly systematic behavior the mean is

ks
t
(m]c)"1!(1!p

t
)m, (2)

for (m]c) "xations, for m"1, 2,2 and c"1, 2,2
(Note that under the assumption of strictly system-
atic behavior the search "eld will be completely
scanned m times in (m]c) "xations, since the num-
ber of "xations required to make a complete scan
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Fig. 1. Expected accuracy versus number of "xations for
c"1000 with p

t
"0.5.

corresponds to the number of distinct cells that
comprise the search "eld.)

Then, since it can be shown that

kr
t
(m]c))ks

t
(m]c) (3)

(Harris et al., 1998), it follows that the correspond-
ing range for the mean of the search accuracy,
k
t
(m]c), is de"ned by

kr
t
(m]c))k

t
(m]c))ks

t
(m]c), (4)

since the accuracy yielded by any mixture of ran-
dom and systematic behavior lies between the two
extremes.

As alluded to earlier, accuracy depends on the
number of "xations, the conditional probability of
detection, and the size of the search "eld. Speci"-
cally, an analysis of Eqs. (1) and (2) reveals that the
mean accuracy is directly related to both the num-
ber of "xations and the conditional probability of
detection, as would be expected, regardless of the
type of search behavior. In the case of strictly ran-
dom behavior, also as anticipated, the mean accu-
racy is inversely related to the number of cells in the
search "eld. Lastly, it is signi"cant that the accu-
racy may be obtained without any information
pertaining to the number of defects or their loca-
tion, since this data is normally unavailable in
practice.

4. Illustrations and analysis

In this section, the mean search accuracy and its
relationship to the various factors that in#uence it
will be explored further. A factor of particular inter-
est here is the search time, due to the importance of
the speed/accuracy trade-o!. The implications of
these "ndings, as they apply to aircraft inspection,
will also be addressed.

It is certainly possible to determine the range of
the expected accuracy from the limits for a speci"c
length of time, or equivalently, a certain number of
"xations. (A "xation averages about one-third of
a second in duration (e.g., Drury, 1985)). Moreover,
since the range is de"ned by the di!erence between
the best-case and worst-case search behaviors, it
serves to underscore the relative improvement in

accuracy that could be achieved (through training,
for example).

As an illustration, consider Fig. 1 where the ex-
pected accuracies for the cases of strictly systematic
and random behavior are depicted. A conditional
probability of detection equal to 0.5 and a "eld size
of 1000 cells were chosen for this illustration. (Thus
integer multiples of 1000 "xations constitute com-
plete scans for the systematic model.) Observe, for
example, that the mean accuracy corresponding to
1000 "xations is bounded below by 0.4 (approx.)
and above by 0.5.

The incremental improvements in accuracy that
can be attained through the allocation of additional
time to inspection can also be determined. Note in
Fig. 1, for example, that an additional 1000
"xations will increase the accuracy by about
50%, although this rate of increase declines as the
number of "xations increase. This type of informa-
tion is of course fundamental to assessing the
consequences of the trade-o! between speed and
accuracy.
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Fig. 2. Expected accuracy versus number of "xations for
c"1000 with p

t
"0.5 and p

t
"0.6.

Fig. 3. Expected accuracy versus treatment combinations for
random model with p

t
"0.5.

In addition to the number of "xations, the ex-
pected accuracy will also a!ected by the condi-
tional probability of detection and the "eld size.
First, recall that the expected accuracy for both
models is directly related to the conditional
probability of detection. This relationship is con-
"rmed in Fig. 2, where the accuracy limits have
shifted upward as a result of increasing the condi-
tional probability of detection to 0.6. A further
comparison of Figs. 1 and 2 reveals that the di!er-
ence between the extremes is larger initially, but
gradually diminishes (and eventually becomes
smaller) as the number of "xations increases and
the expected accuracy approaches its maximum.

Secondly, recall that the expected accuracy for
the random model is a function of the "eld size,
whereas the expected accuracy for the systematic
model is not. If the proportion of the number of
"xations to the number of cells is maintained, how-
ever, the expected accuracy of the random model
is not sensitive to this parameter. The treatment

combinations depicted in Fig. 3 evidence this lack
of sensitivity to the relative "eld size. While these
treatment combinations are by no means exhaust-
ive, they are nevertheless representative of situ-
ations in which the search "elds are composed of
more than a small number of cells. The implication
of this result is that the expected accuracy will be
roughly the same for structures of di!erent sizes,
provided that the ratios of the search times to
the "eld sizes are proportional for the various
structures.

Lastly, in practice the values for both the condi-
tional probabilities of detection and the number of
cells that comprise the search "eld must be re-
solved. First, the conditional probabilities of detec-
tion can be determined experimentally in any one
of several ways (Engel, 1977; Widdel and Kaster,
1981; Bowler, 1990). Engel (1977), for example,
describes a procedure that requires a subject to
"xate on the center of a region while a target
appears at various distances and directions from
the "xation point in the periphery. The percentage
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of the targets that the subject locates, in conjunc-
tion with their respective positions, determines the
conditional probability of detection. (Note that the
value obtained actually represents the average con-
ditional probability of detection for a particular
defect type.) This procedure can also serve to estab-
lish the size of the visual lobe; the ratio of the
area of the search "eld to that of the visual lobe
approximates the number of cells that comprise the
"eld.

5. Conclusions

Models for visual search that characterize air-
craft inspection tasks were adopted to examine the
speci"c relationship between speed and accuracy in
this environment. The two models employed pre-
dict the mean accuracy as a function of time under
the assumptions of either strictly systematic or ran-
dom search behavior. In the absence of knowledge
of individual search behavior, these two models
encompass the entire range of mean accuracy for
a given scenario. The magnitude of the di!erence
between the two limiting values indicates the de-
gree of improvement that could be achieved
through training. Moreover, the incremental im-
provements in accuracy that can be attained with
increased search time can also be determined.

Subsequently, the relationship of these limits
to the other model parameters, the conditional
probability of detection, and the size of the
search "eld were examined. Firstly, the mean
accuracy is directly related to the conditional
probability of detection, as would be expected, re-
gardless of the type of search behavior. Secondly,
also as anticipated, the mean accuracy is inversely
related to the number of cells in the search "eld in
the case of strictly random behavior. Nevertheless,
it was determined that the mean accuracy is not
signi"cantly diminished by an increase in the "eld
size if the search time is increased proportionally.
Subsequently, a method for determining these
parameters in practice was also summarized. Fi-
nally, it is noteworthy that the mean accuracy nei-
ther depends on the number of defects nor their
location, since this data is generally not available in
practice.
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